MODAL TRANSIENT SIMULATION MODEL FOR FLEXIBLE ASYMMETRIC ROTORS.
Academic Article
Overview
Additional Document Info
View All
Overview
abstract
A simulation model is developed which accounts for an orthotropic as opposed to an axisymmetric rotor, i. e. , rotors are considered whose stiffness and inertial properties in two mutually orthogonal planes are different. A rotor-fixed formulation is employed to define the rotor's elastic deflections. Favorable characteristics of this formulation are that the rotor's inertial and stiffness properties are constant, and the modal coordinates are nonoscillatory during synchronous motion. The validity of the formulation is verified by conduction transient simulations for a rotor having the approximate physical dimensions of a two-pole 500 Mw alternator. The simulation model correctly simulates the rotor's theoretically predicted dynamic behavior.