Assessing impacts of global climate change on water and food security in the black soil region of Northeast China using an improved SWAT-CO2 model. Academic Article uri icon

abstract

  • Future climate change may have substantial impacts on both water resources and food security in China's black soil region. The Liao River Basin (LRB; 220,000 km2) is representative of the main black soil area, making it ideal for studying climate change effects on black soil. In this study, the Soil and Water Assessment Tool (SWAT) model was first initialized for the LRB. Actual evapotranspiration (ETa) values calculated using the Surface Energy Balance System (SEBS) model and city-level corn (Zea mays L.) yields were then used to calibrate the SWAT model. Finally, the SWAT model was modified to accept dynamic CO2 input and output crop transpiration, soil evaporation, and canopy interception separately to explore the impacts of future climate change on ET related variables and crop water productivity (CWP) in the LRB. Simulation scenario design included 22 General Circulation Models (GCMs) and 4 Shared Socioeconomic Pathways (SSPs) scenarios from the latest Coupled Model Intercomparison Project 6 (CMIP6) for two 30-year periods of 2041-2070 and 2071-2100. The predicted results showed a significant (P < 0.05) increase in air temperatures and precipitation in the LRB. In contrast, solar radiation decreased significantly and was most reduced for the SSP3-7.0 scenario. Reference evapotranspiration (ETo), ETa, and soil evaporation significantly increased in future scenarios, while canopy interception and crop transpiration showed significant reductions, particularly under the 2071-2100 SSP5-8.5 scenario. Overall, corn yield elevated considerably (P < 0.05) with the largest increase for the SSP5-8.5 scenario during 2071-2100. However, the SSP3-7.0 scenario indicated a significant decline in yield. Future changes in CWP were similar to those for corn yield, with significant increases in the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. These findings suggested future climate change may have a positive impact on corn production in the black soil region of the LRB.

published proceedings

  • Sci Total Environ

author list (cited authors)

  • Zhang, Y., Liu, H., Qi, J., Feng, P., Zhang, X., Liu, D. L., ... Chen, Y.

citation count

  • 4

complete list of authors

  • Zhang, Yingqi||Liu, Haipeng||Qi, Junyu||Feng, Puyu||Zhang, Xueliang||Liu, De Li||Marek, Gary W||Srinivasan, Raghavan||Chen, Yong

publication date

  • January 2023