Adaptive multicut aggregation for two-stage stochastic linear programs with recourse
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Outer linearization methods for two-stage stochastic linear programs with recourse, such as the L-shaped algorithm, generally apply a single optimality cut on the nonlinear objective at each major iteration, while the multicut version of the algorithm allows for several cuts to be placed at once. In general, the L-shaped algorithm tends to have more major iterations than the multicut algorithm. However, the trade-offs in terms of computational time are problem dependent. This paper investigates the computational trade-offs of adjusting the level of optimality cut aggregation from single cut to pure multicut. Specifically, an adaptive multicut algorithm that dynamically adjusts the aggregation level of the optimality cuts in the master program, is presented and tested on standard large-scale instances from the literature. Computational results reveal that a cut aggregation level that is between the single cut and the multicut can result in substantial computational savings over the single cut method. 2010 Elsevier B.V. All rights reserved.