Enhanced microbubble contrast agent oscillation following 250kHz insonation. Academic Article uri icon

abstract

  • Microbubble contrast agents are widely used in ultrasound imaging and therapy, typically with transmission center frequencies in the MHz range. Currently, an ultrasound center frequency near 250kHz is proposed for clinical trials in which ultrasound combined with microbubble contrast agents is applied to open the blood brain barrier, since at this low frequency focusing through the human skull to a predetermined location can be performed with reduced distortion and attenuationcompared to higher frequencies. However, the microbubble vibrational response has not yet been carefully evaluated at this low frequency (an order of magnitude below the resonance frequency of these contrast agents). In the past, it was assumed that encapsulated microbubble expansion is maximized near the resonance frequency and monotonically decreases with decreasing frequency. Our results indicated that microbubble expansion was enhanced for 250kHz transmission as compared with the 1MHz center frequency. Following 250kHz insonation, microbubble expansion increased nonlinearly with increasing ultrasonic pressure, and was accurately predicted by either the modified Rayleigh-Plesset equation for a clean bubble or the Marmottant model of a lipid-shelledmicrobubble. The expansion ratio reached 30-fold with 250kHz at a peak negative pressure of 400kPa, as compared to a measured expansion ratio of 1.6 fold for 1MHz transmission at a similar peak negative pressure. Further, the range of peak negative pressure yielding stable cavitation in vitro was narrow (~100kPa) for the 250kHz transmission frequency. Blood brain barrier opening using in vivo transcranial ultrasound in mice followed the same trend as the in vitro experiments, and the pressure range for safe and effective treatment was 75-150kPa. For pressures above 150kPa, inertial cavitation and hemorrhage occurred. Therefore, we conclude that (1) at this low frequency, and for the large oscillations, lipid-shelled microbubbles can be approximately modeled as clean gas microbubbles and (2) the development of safe and successful protocols for therapeutic delivery to the brain utilizing 250kHz or a similar center frequency requires consideration of the narrow pressure window between stable and inertial cavitation.

published proceedings

  • Sci Rep

altmetric score

  • 3.5

author list (cited authors)

  • Ilovitsh, T., Ilovitsh, A., Foiret, J., Caskey, C. F., Kusunose, J., Fite, B. Z., ... Ferrara, K. W.

citation count

  • 39

complete list of authors

  • Ilovitsh, Tali||Ilovitsh, Asaf||Foiret, Josquin||Caskey, Charles F||Kusunose, Jiro||Fite, Brett Z||Zhang, Hua||Mahakian, Lisa M||Tam, Sarah||Butts-Pauly, Kim||Qin, Shengping||Ferrara, Katherine W

publication date

  • November 2018