Voltage-clamp analysis and computational model of dopaminergic neurons from mouse retina.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Isolated dopaminergic amacrine (DA) cells in mouse retina fire rhythmic, spontaneous action potentials and respond to depolarizing current with trains of low-frequency action potentials. To investigate the roles of voltage-gated ion channels in these processes, the transient A-type K+ current (I(K,A)) and Ca2+ current (I(Ca)) in isolated mouse DA cells were analyzed by voltage clamp. The I(K,A) activated at -60 mV and inactivated rapidly. I(Ca) activated at around -30 mV and reached a peak at 10 mV without apparent inactivation. We also extended our previous computational model of the mouse DA cell to include the new electrophysiological data. The model consisted of a membrane capacitance in parallel with eight currents: Na+ transient (I(Na,T)), Na+ persistent (I(Na,P)), delayed rectifier potassium (I(Kdr)), I(K,A), calcium-dependent potassium (I(K,Ca)), L-type Ca2+ I(Ca), hyperpolarization-activated cation current (I(h)), and a leak current (I(L)). Hodgkin-Huxley type equations were used to define the voltage- and time-dependent activation and inactivation. The simulations were implemented using the neurosimulator SNNAP. The model DA cell was spontaneously active from a wide range of initial membrane potentials. The spontaneous action potentials reached 35 mV at the peak and hyperpolarized to -76 mV between spikes. The spontaneous firing frequency in the model was 6 Hz. The model DA cell responded to prolonged depolarizing current injection by increasing its spiking frequency and eventually reaching a depolarization block at membrane potentials greater than -10 mV. The most important current for determining the firing rate was I(K,A). When the amplitude of I(K,A) was decreased, the firing rate increased. I(Ca) and I(K,Ca) also affected the width of action potentials but had only minor effects on the firing rate. Ih affected the firing rate slightly but did not change the waveform of the action potentials.