Deficit in long-term synaptic plasticity is rescued by a computationally predicted stimulus protocol.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Mutations in the gene encoding CREB-binding protein (CBP) cause deficits in long-term plasticity, learning, and memory. Here, long-term synaptic facilitation (LTF) at Aplysia sensorimotor synapses in cell culture was used as a model system to investigate methods for overcoming deficits in LTF produced by a CBP knockdown. Injecting CBP-siRNA into individual sensory neurons reduced CBP levels and impaired LTF produced by a standard protocol of five 5-min pulses of serotonin (5-HT) delivered at 20 min interstimulus intervals. A computational model, which simulated molecular processes underlying LTF induction, predicted a rescue protocol of five pulses of 5-HT at non-uniform interstimulus intervals that overcame the consequences of reduced CBP and restored LTF. These results suggest that complementary empirical and computational studies can identify methods for ameliorating impairments of learning attributable to molecular lesions.