Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model. Academic Article uri icon

abstract

  • Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M (PKM) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKM. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKM, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKM. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKM enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKM. Second, cross capture requires the induction of LTD to induce dendritic PKM synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKM inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.

published proceedings

  • PLoS Comput Biol

altmetric score

  • 1.25

author list (cited authors)

  • Smolen, P., Baxter, D. A., & Byrne, J. H.

citation count

  • 56

complete list of authors

  • Smolen, Paul||Baxter, Douglas A||Byrne, John H

editor list (cited editors)

  • Morrison, A.

publication date

  • January 2012