Energy Efficient Monitoring for Intrusion Detection in Battery-Powered Wireless Mesh Networks
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Wireless Mesh Networks (WMN) are easy-to-deploy, low cost solutions for providing networking and internet services in environments with no network infrastructure, e.g., disaster areas and battlefields. Since electric power is not readily available in such environments battery-powered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous monitoring, remains an open research problem. In this paper we propose that carefully chosen monitoring mesh nodes ensure continuous and complete detection coverage, while allowing non-monitoring mesh nodes to save energy through duty-cycling. We formulate the monitoring node selection problem as an optimization problem and propose distributed and centralized solutions for it, with different tradeoffs. Through extensive simulations and a proof-of-concept hardware/software implementation we demonstrate that our solutions extend the WMN lifetime by 8%, while ensuring, at the minimum, a 97% intrusion detection rate. 2011 Springer-Verlag.
name of conference
Ad-hoc, Mobile, and Wireless Networks - 10th International Conference, ADHOC-NOW 2011, Paderborn, Germany, July 18-20, 2011. Proceedings