Gata4 drives Hh-signaling for second heart field migration and outflow tract development Institutional Repository Document uri icon

abstract

  • AbstractDominant mutations of Gata4, an essential cardiogenic transcription factor (TF), cause outflow tract (OFT) defects in both human and mouse. We investigated the molecular mechanism underlying this requirement. Gata4 happloinsufficiency in mice caused OFT defects including double outlet right ventricle (DORV) and conal ventricular septum defects (VSDs). We found that Gata4 is required within Hedgehog (Hh)-receiving second heart field (SHF) progenitors for normal OFT alignment. Increased Pten-mediated cell-cycle transition, rescued atrial septal defects but not OFT defects in Gata4 heterozygotes. SHF Hh-receiving cells failed to migrate properly into the proximal OFT cushion in Gata4 heterozygote embryos. We find that Hh signaling and Gata4 genetically interact for OFT development. Gata4 and Smo double heterozygotes displayed more severe OFT abnormalities including persistent truncus arteriosus (PTA) whereas restoration of Hedgehog signaling rescued OFT defects in Gata4-mutant mice. In addition, enhanced expression of the Gata6 was observed in the SHF of the Gata4 heterozygotes. These results suggested a SHF regulatory network comprising of Gata4, Gata6 and Hh-signaling for OFT development. This study indicates thatGata4potentiation of Hh signaling is a general feature ofGata4-mediated cardiac morphogenesis and provides a model for the molecular basis of CHD caused by dominant transcription factor mutations.Author SummaryGata4 is an important protein that controls the development of the heart. Human who possess a single copy of Gata4 mutation display congenital heart defects (CHD), including the double outlet right ventricle (DORV). DORV is an alignment problem in which both the Aorta and Pulmonary Artery originate from the right ventricle, instead of originating from the left and the right ventricles, respectively. To study how Gata4 mutation causes DORV, we used a Gata4 mutant mouse model, which displays DORV. We showed that Gata4 is required in the cardiac precursor cells for the normal alignment of the great arteries. Although Gata4 mutation inhibits the rapid increase in number of the cardiac precursor cells, rescuing this defects does not recover the normal alignment of the great arteries. In addition, there is a movement problem of the cardiac precursor cells when migrating toward the great arteries during development. We further showed that a specific molecular signaling, Hh-signaling, is responsible to the Gata4 action in the cardiac precursor cells. Importantly, over-activating the Hh-signaling rescues the DORV in the Gata4 mutant embryos. This study provides an explanation for the ontogeny of CHD.

altmetric score

  • 8.184

author list (cited authors)

  • Liu, J., Cheng, H., Xiang, M., Zhou, L., Zhang, K. e., Moskowitz, I. P., & Xie, L.

citation count

  • 0

complete list of authors

  • Liu, Jielin||Cheng, Henghui||Xiang, Menglan||Zhou, Lun||Zhang, Ke||Moskowitz, Ivan P||Xie, Linglin

Book Title

  • bioRxiv

publication date

  • September 2018