The Role of Tape Measure Protein in Nucleocytoplasmic Large DNA Virus Capsid Assembly. Academic Article uri icon


  • Nucleocytoplasmic large DNA viruses (NCLDVs) are a group of large viruses that infect a wide range of hosts, from animals to protists. These viruses are grouped together in NCLDV based on genomic sequence analyses. They share a set of essential genes for virion morphogenesis and replication. Most NCLDVs generally have large physical sizes while their morphologies vary in different families, such as icosahedral, brick, or oval shape, raising the question of the possible regulatory factor on their morphogenesis. The capsids of icosahedral NCLDVs are assembled from small building blocks, named capsomers, which are the trimeric form of the major capsid proteins. Note that the capsids of immature poxvirus are spherical even though they are assembled from capsomers that share high structural conservation with those icosahedral NCLDVs. The recently published high resolution structure of NCLDVs, Paramecium bursaria Chlorella virus 1 and African swine fever virus, described the intensive network of minor capsid proteins that are located underneath the capsomers. Among these minor proteins is the elongated tape measure protein (TmP) that spans from one icosahedral fivefold vertex to another. In this study, we focused on the critical roles that TmP plays in the assembly of icosahedral NCLDV capsids, answering a question raised in a previously proposed spiral mechanism. Interestingly, basic local alignment search on the TmPs showed no significant hits in poxviruses, which might be the factor that differentiates poxviruses and icosahedral NCLDVs in their morphogenesis.

published proceedings

  • Viral Immunol

altmetric score

  • 2.85

author list (cited authors)

  • Xian, Y., Avila, R., Pant, A., Yang, Z., & Xiao, C.

citation count

  • 6

complete list of authors

  • Xian, Yuejiao||Avila, Ricardo||Pant, Anil||Yang, Zhilong||Xiao, Chuan

publication date

  • February 2021