Optimal blind nonlinear least-squares, carrier phase and frequency offset estimation for general QAM modulations
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
This paper introduces a family of blind feedforward nonlinear least-squares (NLS) estimators for joint estimation of the carrier phase and frequency offset of general quadrature amplitude modulated (QAM) transmissions. As an extension of the Viterbi and Viterbi (V&V) estimator, a constellation-dependent optimal matched nonlinear estimator is derived such that its asymptotic (large sample) variance is minimized. A class of conventional monomial estimators is also proposed. The asymptotic performance of these estimators is established in closed-form expression and compared with the Cramr-Rao lower bound. A practical implementation of the optimal matched estimator, which is a computationally efficient approximation of the latter and exhibits negligible performance loss, is also derived. Finally, computer simulations are presented to corroborate the theoretical performance analysis and indicate that the proposed optimal matched nonlinear estimator improves significantly the performance of the classic fourth-power estimator.