An Electrospray Ionization Source for Integration with Microfluidics Academic Article uri icon

abstract

  • We have demonstrated a new electrospray ionization (ESI) device incorporating a tip made from a shaped thin film, bonded to a microfluidic channel, and interfaced to a time-of-flight mass spectrometer (TOFMS). A triangular-shaped thin polymer tip was formed by lithography and etching. A microfluidic channel, 20 microm wide and 10 microm deep, was embossed in a cyclo olefin substrate using a silicon master. The triangular tip was aligned with the channel and bonded between the channel plate and a flat plate to create a microfluidic channel with a wicking tip protruding from the end. This structure aided the formation of a stable Taylor cone at the apex of the tip, forming an electrospray ionization source. This source was tested by spraying several solutions for mass spectrometric analysis. Because the components are all made by lithographic approaches with high geometrical fidelity, an integrated array system with multiple channels can be formed with the same method and ease as a single channel. We tested a multichannel system in a multiplexed manner and showed reliable operation with no significant cross contamination between closely spaced channels.

author list (cited authors)

  • Kameoka, J., Orth, R., Ilic, B., Czaplewski, D., Wachs, T., & Craighead, H. G.

publication date

  • January 1, 2002 11:11 AM