Rapid prototyping of nanofluidic systems using size-reduced electrospun nanofibers for biomolecular analysis. Academic Article uri icon


  • Biomolecular transport in nanofluidic confinement offers various means to investigate the behavior of biomolecules in their native aqueous environments, and to develop tools for diverse single-molecule manipulations. Recently, a number of simple nanofluidic fabrication techniques has been demonstrated that utilize electrospun nanofibers as a backbone structure. These techniques are limited by the arbitrary dimension of the resulting nanochannels due to the random nature of electrospinning. Here, a new method for fabricating nanofluidic systems from size-reduced electrospun nanofibers is reported and demonstrated. As it is demonstrated, this method uses the scanned electrospinning technique for generation of oriented sacrificial nanofibers and exposes these nanofibers to harsh, but isotropic etching/heating environments to reduce their cross-sectional dimension. The creation of various nanofluidic systems as small as 20 nm is demonstrated, and practical examples of single biomolecular handling, such as DNA elongation in nanochannels and fluorescence correlation spectroscopic analysis of biomolecules passing through nanochannels, are provided.

published proceedings

  • Small

author list (cited authors)

  • Park, S., Huh, Y. S., Szeto, K., Joe, D. J., Kameoka, J., Coates, G. W., ... Craighead, H. G.

citation count

  • 14

complete list of authors

  • Park, Seung-Min||Huh, Yun Suk||Szeto, Kylan||Joe, Daniel J||Kameoka, Jun||Coates, Geoffrey W||Edel, Joshua B||Erickson, David||Craighead, Harold G

publication date

  • November 2010


published in