Construction of Versatile and Functional Nanostructures Derived from CO2 -based Polycarbonates.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The construction of amphiphilic polycarbonates through epoxides/CO2 coupling is a challenging aim to provide more diverse CO2 -based functional materials. In this report, we demonstrate the facile preparation of diverse and functional nanoparticles derived from a CO2 -based triblock polycarbonate system. By the judicious use of water as chain-transfer reagent in the propylene oxide/CO2 polymerization, poly(propylene carbonate (PPC) diols are successfully produced and serve as macroinitiators in the subsequent allyl glycidyl ether/CO2 coupling reaction. The resulting ABA triblock polycarbonate can be further functionalized with various thiols by radical mediated thiol-ene click chemistry, followed by self-assembly in deionized water to construct a versatile and functional nanostructure system. This class of amphiphilic polycarbonates could embody a powerful platform for biomedical applications.