The algebra of matrices M with entries in an abelian von Neumann algebra is a C*-module. C*-modules were originally defined and studied by Kaplansky and we outline the foundations of the theory and particular properties of M. Furthermore, we prove a structure theorem for ultraweakly closed submodules of M, using techniques from the theory of type I finite von Neumann algebras. By analogy with the classical join in topology, the join for operator algebras A and B acting on Hilbert spaces H and K, respectively, was defined by Gilfeather and Smith. Assuming that K is finite dimensional, Gilfeather and Smith calculated the Hochschild cohomology groups of the join. We assume that M is the algebra of matrices with entries in a maximal abelian von Neumann algebra U, A is an operator algebra acting on a Hilbert space K, and B is an ultraweakly closed subalgebra of M containing U. In this new context, we redefine the join, generalize the calculations of Gilfeather and Smith, and calculate the cohomology groups of the join.

The algebra of matrices M with entries in an abelian von Neumann algebra is a C*-module. C*-modules were originally defined and studied by Kaplansky and we outline the foundations of the theory and particular properties of M. Furthermore, we prove a structure theorem for ultraweakly closed submodules of M, using techniques from the theory of type I finite von Neumann algebras.

By analogy with the classical join in topology, the join for operator algebras A and B acting on Hilbert spaces H and K, respectively, was defined by Gilfeather and Smith. Assuming that K is finite dimensional, Gilfeather and Smith calculated the Hochschild cohomology groups of the join.

We assume that M is the algebra of matrices with entries in a maximal abelian von Neumann algebra U, A is an operator algebra acting on a Hilbert space K, and B is an ultraweakly closed subalgebra of M containing U. In this new context, we redefine the join, generalize the calculations of Gilfeather and Smith, and calculate the cohomology groups of the join.