Stromal interaction molecule 1 (STIM1) and Orai1 mediate histamine-evoked calcium entry and nuclear factor of activated T-cells (NFAT) signaling in human umbilical vein endothelial cells.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Histamine is an important immunomodulator involved in allergic reactions and inflammatory responses. In endothelial cells, histamine induces Ca(2+) mobilization by releasing Ca(2+) from the endoplasmic reticulum and eliciting Ca(2+) entry across the plasma membrane. Herein, we show that histamine-evoked Ca(2+) entry in human umbilical vein endothelial cells (HUVECs) is sensitive to blockers of Ca(2+) release-activated Ca(2+) (CRAC) channels. RNA interference against STIM1 or Orai1, the activating subunit and the pore-forming subunit of CRAC channels, respectively, abolishes this histamine-evoked Ca(2+) entry. Furthermore, overexpression of dominant-negative CRAC channel subunits inhibits while co-expression of both STIM1 and Orai1 enhances histamine-induced Ca(2+) influx. Interestingly, gene silencing of STIM1 or Orai1 also interrupts the activation of calcineurin/nuclear factor of activated T-cells (NFAT) pathway and the production of interleukin 8 triggered by histamine in HUVECs. Collectively, these results suggest a central role of STIM1 and Orai1 in mediating Ca(2+) mobilization linked to inflammatory signaling of endothelial cells upon histamine stimulation.