Integrin-binding peptides containing RGD produce coronary arteriolar dilation via cyclooxygenase activation.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Integrin binding by Arg-Gly-Asp (RGD)-containing peptides has been shown to alter vascular tone in a variety of blood vessels and has been implicated as a mechanism of vasoregulation during tissue injury. However, the effect of these peptides in the coronary circulation has not been examined. Thus the purpose of our study was to test the hypothesis that integrins act as receptors linked to the regulation of coronary vasomotor function. In particular, the ability of RGD-containing peptides to influence vascular tone by interacting with the alpha(v)beta(3)- and alpha(5)beta(1)-integrins was studied in isolated pig coronary arterioles. All vessels developed basal tone and dilated in a concentration-dependent manner to soluble peptides cyclic GPenGRGDSPCA (cyclic RGD), an alpha(v)beta(3)-cyclic-binding peptide (XJ735), DMP7677, an alpha(5)beta(1)-binding peptide, and to protease-generated (neutrophil elastase) fragments of denatured collagen type I (a major RGD-containing extracellular matrix protein). The vasodilations to cyclic RGD, XJ735, and collagen fragments were almost completely blocked by endothelial removal or by the cyclooxygenase inhibitor indomethacin. In contrast, after endothelial removal and incubation with indomethacin, coronary arterioles showed concentration-dependent constriction to the alpha(5)beta(1)-integrin ligand DMP7677 but not to cyclic RGD or XJ735. Collectively, our results indicate that activation of endothelial alpha(v)beta(3)- and alpha(5)beta(1)-integrins mediates coronary arteriolar dilation via the endothelial production of cyclooxygenase-derived prostaglandins. These data support a role for integrins in the regulation of coronary vascular tone that may be particularly important during myocardial injury.