Surprises from the chromosome front: lessons from Arabidopsis on telomeres and telomerase. Academic Article uri icon


  • Telomeres serve two vital functions: They act as a buffer against the end-replication problem, and they prevent chromosome ends from being recognized as double-strand DNA (dsDNA) breaks. These functions are orchestrated by the telomerase reverse transcriptase and a variety of telomere protein complexes. Here, we discuss our recent studies with Arabidopsis thaliana that uncovered a new and highly conserved telomere complex called CST (Cdc13/CTC1, STN1, TEN1). Formerly believed to be yeast specific, CST has now been identified as a key component of both plant and vertebrate telomeres, which is essential for genome integrity and stem cell viability. We also describe the unexpected discovery of alternative telomerase ribonucleoprotein complexes in Arabidopsis. Fueled by duplication and diversification of the telomerase RNA subunit and telomerase accessory proteins, these telomerase complexes act in concert to maintain genome stability. In addition to the canonical telomerase enzyme, one of two alternative telomerase ribonucleoprotein (RNP) complexes functions as a novel negative regulator of enzyme activity in response to genotoxic stress. These contributions highlight the immense potential of Arabidopsis in probing the depths of the chromosome end.

published proceedings

  • Cold Spring Harb Symp Quant Biol

altmetric score

  • 1

author list (cited authors)

  • Nelson, A., & Shippen, D. E.

citation count

  • 10

complete list of authors

  • Nelson, ADL||Shippen, DE

publication date

  • January 2012