Fully Distributed Pull-Based Event-Triggered Bipartite Fixed-Time Output Control of Heterogeneous Systems With an Active Leader. Academic Article uri icon

abstract

  • This article deals with the fully distributed pull-based event-triggered bipartite fixed-time output consensus problem of heterogeneous linear multiagent systems (HLMASs) with an active leader, whose information can be merely accessed by a small fraction of followers. First, a class of fully distributed fixed-time observers is proposed for each follower to estimate the leader's system matrices, position, and control input under the signed communication topology, respectively. Then, based on the estimations of leader's system matrices, two adaptive algorithms are given to solve the regulator equations. Furthermore, the fully distributed fixed-time observer-based controllers associated with state feedback and output feedback are, respectively, proposed by employing the pull-based event-triggered mechanism (ETM) where each agent merely updates controller at its own triggering instants. Correspondingly, some sufficient criteria and the rigorous proofs are provided to ensure the implementation of bipartite output consensus in fixed time by using the Lyapunov stability theory and fixed-time stability theory. Moreover, the strictly positive lower bounds of intervals between two adjacent event-triggered times are derived, which means the Zeno behavior is ruled out. Finally, numerical simulations are performed to demonstrate the theoretical analysis.

published proceedings

  • IEEE Trans Cybern

author list (cited authors)

  • Jiang, D., Wen, G., Peng, Z., Wang, J., & Huang, T.

citation count

  • 6

complete list of authors

  • Jiang, Dongxue||Wen, Guoguang||Peng, Zhaoxia||Wang, Jin-Liang||Huang, Tingwen

publication date

  • May 2023