Blood-brain barrier crossing using magnetic stimulated nanoparticles. Academic Article uri icon

abstract

  • Due to the low permeability and high selectivity of the blood-brain barrier (BBB), existing brain therapeutic technologies are limited by the inefficient BBB crossing of conventional drugs. Magnetic nanoparticles (MNPs) have shown great potential as nano-carriers for efficient BBB crossing under the external static magnetic field (SMF). To quantify the impact of SMF on MNPs' in vivo dynamics towards BBB crossing, we developed a physiologically based pharmacokinetic (PBPK) model for intraperitoneal (IP) injected superparamagnetic iron oxide nanoparticles coated by gold and conjugated with poly (ethylene glycol) (PEG) (SPIO-Au-PEG NPs) in mice. Unlike most reported PBPK models that ignore brain permeability, we first obtained the brain permeabilities with and without SMF by determining the concentration of SPIO-Au-PEG NPs in the cerebral blood and brain tissue. This concentration in the brain was simulated by the advection-diffusion equations and was numerically solved in COMSOL Multiphysics. The results from the PBPK model after incorporating the brain permeability showed a good agreement (regression coefficient R2=0.848) with the in vivo results, verifying the capability of using the proposed PBPK model to predict the in vivo biodistribution of SPIO-Au-PEG NPs under the exposure to SMF. Furthermore, the in vivo results revealed that the distribution coefficient from blood to brain under the exposure to SMF (4.01%) is slightly better than the control group (3.68%). In addition, the modification of SPIO-Au-PEG NPs with insulin (SPIO-Au-PEG-insulin) showed an improvement of the brain bioavailability by 24.47% in comparison to the non-insulin group. With the SMF stimulation, the brain bioavailability of SPIO-Au-PEG-insulin was further improved by 3.91% compared to the group without SMF. The PBPK model and in vivo validation in this paper lay a solid foundation for future study on non-invasive targeted drug delivery to the brain.

published proceedings

  • J Control Release

altmetric score

  • 1.6

author list (cited authors)

  • Chen, J., Yuan, M., Madison, C. A., Eitan, S., & Wang, Y. a.

citation count

  • 10

complete list of authors

  • Chen, Jingfan||Yuan, Muzhaozi||Madison, Caitlin A||Eitan, Shoshana||Wang, Ya

publication date

  • May 2022