A systems-integration approach to the optimization of macroscopic water desalination and distribution networks: a general framework applied to Qatar's water resources
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The objective of this article is to introduce an optimization-based approach for the integrated design and operation of macroscopic water networks. A structural representation approach is developed to embed all potential configurations of interest. This representation accounts for water resources, desalination plants, water users, wastewater treatment facilities, and storage. Water recycle/reuse is enhanced via the use of treated water. Water utilization is improved by minimizing the losses of discharged water resulting from the linkage of power plants and thermal desalination plants and the lack of integration between water production and consumption. Excess water is saved in storage systems or injected in aquifers for strategic (long-term) storage. The developed approach also accounts for the economic values of water uses and storage and for the cost of water production and allocation. An optimization formulation is developed and solved to determine the optimal operation of the infrastructure. The solution also determines the optimal monthly allocation and storage of water resources. A case study is solved for managing the water resources in the State of Qatar while accounting for desalination, distribution, and storage. The solution indicates that storage in tanks reaches its maximum capacity in less than a month while storage in aquifers continues throughout the year as a strategic step towards water security. The solution also illustrates the need to treat wastewater in addition to using desalination of seawater. The output water streams with different qualities are assigned to proper destinations. 2011 Springer-Verlag.