Removal of hexavalent chromium from groundwater by granular activated carbon Academic Article uri icon

abstract

  • Removal of hexavalent chromium, Cr(VI), from an artificial groundwater by two commercially available granular activated carbons (GACs) was investigated in batch and continuous-flow column studies. Experimental parameters examined included solution pH, presence of dissolved oxygen (DO), and GAC pretreatment with reducing agents. As solution pH increased from 4 to 7.5, the amount of Cr(VI) removed by both GACs decreased significantly. Removal of DO from experimental systems enhanced GAC performance, but pretreatment of the GACs with reductants (ferrous iron or dithionite) did not improve Cr(VI) removal. Equilibration with 0.01 M dibasic potassium phosphate [to extract adsorbed Cr(VI)] followed by a wash with 0.02 N sulfuric acid [to remove precipitated-sorbed Cr(III)] proved to be a viable method to regenerate carbons whose Cr(VI) removal capacities were exhausted. Performance of regenerated carbons exceeded that of virgin carbons, primarily because of the favorable adsorption of Cr(VI) at low pH values and the reduction of Cr(VI) to Cr(III) on acidic GAC surfaces. The presence of Cr(III) in acid wash solutions provides direct evidence that Cr(VI) is reduced to Cr(III) in GAC systems under relatively acidic conditions. Granular activated carbon performance during five complete cycles was consistently high, which suggests that such a system will be able to function over many operation cycles without deleterious effects.

published proceedings

  • WATER ENVIRONMENT RESEARCH

altmetric score

  • 3

author list (cited authors)

  • Han, I., Schlautman, M. A., & Batchelor, B.

citation count

  • 68

complete list of authors

  • Han, I||Schlautman, MA||Batchelor, B

publication date

  • January 2000

publisher