Reductive dechlorination of chlorinated methanes in cement slurries containing Fe(II) Academic Article uri icon

abstract

  • Degradative solidification/stabilization (DS/S) is a novel remediation technology that combines chemical degradation with conventional solidification/stabilization. The applicability of the Fe(II)-based DS/S to treating chlorinated alkanes was tested by characterizing degradation reactions of carbon tetrachloride (CT) and its daughter products in cement slurries containing Fe(II). Degradation kinetics of CT and chloroform (CF) were generally very rapid with reaction rates comparable to rates that can be obtained with zero-valent iron. Dechlorination reactions of CT proceeded primarily via a hydrogenolysis pathway, which yielded CF and methylene chloride (MC) as major products and chloromethane and methane as minor products. However, reaction pathways other than hydrogenolysis also appeared to be important at very high pH conditions. MC apparently was resistant to dechlorination reactions over a period of about two months. Kinetics of CT and CF transformation were strongly dependent on pH with an optimal value around 13, which was higher than found previously for PCE. When the initial CF concentration varied between 0.01 and 1 mM, and the Fe(II) dose was 104 mM, pseudo-first-order kinetics generally described the degradation reactions of CF. However, there was also some indication of substrate saturation kinetics in these experiments. This suggests that a saturation model would better describe the kinetics in systems with higher concentration of substrates or lower concentration of the reactive surfaces.

author list (cited authors)

  • Hwang, I., & Batchelor, B.

citation count

  • 22

publication date

  • September 2002