Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms Academic Article uri icon

abstract

  • Rice (Oryza sativa L.) growth prediction is key for precise rice production. However, the traditional linear rice growth forecasting model is ineffective under rapidly changing climate conditions. Here we show that growth rate (Gr) can be well-predicted by artificial intelligence (AI)-based artificial neural networks (ANN) and gene-expression programming (GEP), with accumulated air temperatures based on growth degree day (GDD). In total, 10,246 Gr from 95 cultivations were obtained with three cultivars, TK9, TNG71, and KH147, in Central and Southern Taiwan. The model performance was evaluated by the Pearson correlation coefficient (r), root mean square error (RMSE), and relative RMSE (r-RMSE) in the whole growth period (lifecycle), as well as the average and specific key stages (transplanting, 50% initial tillering, panicle initiation, 50% heading, and physiological maturity). The results in lifecycle Gr modeling showed that ANN and GEP models had comparable r (0.9893), but the GEP model had the lowest RMSE (3.83 days) and r-RMSE (7.24%). In stage average and specific key stages, each model has its own best-fit growth period. Overall, GEP model is recommended for rice growth prediction considering the model performance, applicability, and routine farming work. This study may lead to smart rice production due to the enhanced capacity to predict rice growth in the field.

published proceedings

  • AGRICULTURE-BASEL

altmetric score

  • 0.25

author list (cited authors)

  • Liu, L., Lu, C., Wang, Y., Lin, K., Ma, X., & Lin, W.

citation count

  • 8

complete list of authors

  • Liu, Li-Wei||Lu, Chun-Tang||Wang, Yu-Min||Lin, Kuan-Hui||Ma, Xingmao||Lin, Wen-Shin

publication date

  • 2022

publisher