Laser-based Additive Manufacturing of Bi-metallic & Tri-metallic Oxide Layers Conference Paper uri icon


  • The motivation of this work is to gain the ability to fabricate material layers that impart corrosion-resistance, self-cleaning and antibacterial properties, leading to an integration of multifunctional characteristics for various applications. Three naturally non-combinable powered metallic oxides namely zinc oxide, zirconium dioxide and titanium oxide were mixed and exposed to a high-energy laser to form solidified layers. The properties of the layers “coated” onto substrates were evaluated by microscopy (SEM), spectroscopy (EDS), diffraction (XRD), hardness, and electrochemical impedance spectroscopy (EIS). The XRD pattern indicates the formation of a tri-metallic oxide and some other bimetallic compositions which are known to exhibit certain of the above-mentioned beneficial properties. Zinc dominated in atomic fraction when compared to titanium and zirconium. Higher energy densities imparted via the laser resulted in the steel substrate mixing with the powder layers, leading to more of a surface alloying action as compared to surface coating.

name of conference

  • Materials Science & Technology 2020

author list (cited authors)

  • Lu, Y., Hurst, M., Velumani, S., Kuttolamadom, M., Castaneda, H., & Esmacher, O.

complete list of authors

  • Lu, Y||Hurst, M||Velumani, S||Kuttolamadom, M||Castaneda, H||Esmacher, O

publication date

  • January 2020