Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster Academic Article uri icon

abstract

  • Density functional theory is used to simulate nanotube growth by addition of a pair of carbon atoms to a composite chiral nanotube cap/cobalt cluster system, with caps corresponding to near-armchair (6, 5), (7, 5) and near-zigzag (9, 1) nanotubes. Two different carbon addition processes are evaluated: in the first, the new carbon atoms are located in the vicinity of the armchair site of the cap rim, and thus this process provides insight into the root-growth mechanism; in the second the carbon atoms are initially located under the cobalt cluster, and thus this process helps one to evaluate the dissolution of carbon inside the metal cluster. The geometric evolution and energetics of the system are used to explain features of the mechanism of nanotube growth. The root-growth reaction is shown to occur by displacement of a cobalt atom initially interacting with the armchair site while the added carbon atoms bond to each other forming a new hexagonal ring, whereas the carbon dissolution process shows formation of dimers inside the cluster only for the (6, 5) system. The energetics for both steps reveals that the dissolution stage is probably controlling the overall nanotube growth rate.

author list (cited authors)

  • Gómez-Gualdrón, D. A., & Balbuena, P. B.

citation count

  • 17

publication date

  • May 2009