Theoretical study on the properties of linear and cyclic amides in gas phase and water solution.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The structural and energetic properties of a group of selected amides, of well-known importance for the design of efficient clathrate inhibitors, are calculated with Hartree-Fock and density functional theory, B3LYP, theoretical levels, and a 6-311++g** basis set in the gas phase and a water solution. The conformational behavior of the molecules is studied through the scanning of the torsional potential energy surfaces and by the analysis of the differences in the energetic and structural properties between the isomers. The properties of the amides in water solution are determined within a self-consistent reaction field approach with a polarizable continuum model that allows the calculation of the different contributions to the free energy of solvation. The calculated barriers to rotation are in good agreement with the available experimental data and the comparison of the gas and water results shows the strong effect of the solute polarization. The properties of different amide-water complexes are calculated and compared with available experimental information.