Tumuluri, Kalpana (2010-05). Thermal Performance of a Novel Heat Transfer Fluid Containing Multiwalled Carbon Nanotubes and Microencapsulated Phase Change Materials. Master's Thesis. Thesis uri icon

abstract

  • The present research work aims to develop a new heat transfer fluid by combining multiwalled carbon nanotubes (MWCNT) and microencapsulated phase change materials (MPCMs). Stable nanofluids have been prepared using different sizes of multiwalled carbon nanotubes and their properties like thermal conductivity and viscosity have been measured. Microencapsulated phase change material slurries containing microcapsules of octadecane have been purchased from Thies Technology Inc. Tests have been conducted to determine the durability and viscosity of the MPCM slurries. Heat transfer experiments have been conducted to determine the heat transfer coefficients and pressure drop of the MWCNT nanofluids and MPCM slurries under turbulent flow and constant heat flux conditions.
    The MPCM slurry and the MWCNT nanofluid have been combined to form a new heat transfer fluid. Heat transfer tests have been conducted to determine the heat transfer coefficient and the pressure drop of the new fluid under turbulent flow and constant heat flux conditions. The potential use of this fluid in convective heat transfer applications has also been discussed.
    The heat transfer results of the MPCM slurry containing octadecane microcapsules was in good agreement with the published literature. The thermal conductivity enhancement obtained for MWCNTs with diameter (60-100 nm) and length (0.5-40?m) was 8.11%. The maximum percentage enhancement (compared to water) obtained in the heat transfer coefficient of the MWCNT nanofluid was in the range of 20-25%. The blend of MPCMs and MWCNTs was highly viscous and displayed a shear thinning behavior. Due to its high viscosity, the flow became laminar and the heat transfer performance was lowered. It was interesting to observe that the value of the maximum local heat transfer coefficient achieved in the case of the blend (laminar flow), was comparable to that obtained in the case of the MPCM slurry (turbulent flow). The pressure drop of the blend was lower than that of the MWCNT nanofluid.

publication date

  • May 2010