Functionality-Based Formation of Secondary Organic Aerosol from m-Xylene Photooxidation Institutional Repository Document uri icon

abstract

  • Abstract. Photooxidation of volatile organic compounds (VOCs) produces condensable oxidized organics (COOs) to yield secondary organic aerosol (SOA), but the fundamental chemical mechanism for gas-to-particle conversion remains uncertain. Here we elucidate the production of COOs and their roles in SOA and brown carbon (BrC) formation from m-xylene oxidation by simultaneous monitoring the evolutions of gas-phase products and aerosol properties in an environmental chamber. Four COO types with the distinct functionalities of dicarbonyls, carboxylic acids, polyhydroxy aromatics/quinones, and nitrophenols are identified from early-generation oxidation, with the yields of 25 %, 37 %, 5 %, and 3 %, respectively. SOA formation occurs via several heterogeneous processes, including interfacial interaction, ionic dissociation/acid-base reaction, and oligomerization, with the yields of (20 4) % and (32 7) % at 10 % and 70 % relative humidity (RH), respectively. Chemical speciation shows the dominant presence of oligomers, nitrogen-containing organics, and carboxylates at RH and carboxylates at low RH. The identified BrC includes N-heterocycles/N-heterochains and nitrophenols, as evident from reduced single scattering albedo. The measured uptake coefficient () for COOs is dependent on the functionality, ranging from 3.7 104 to 1.3 102. A kinetic framework is developed to predict SOA production from the concentrations and uptake coefficients for COOs. This functionality-based approach well reproduces SOA formation from m-xylene oxidation and is broadly applicable to VOC oxidation for other species. Our results reveal that photochemical oxidation of m-xylene represents a major source for SOA and BrC formation under urban environments, because of its large abundance, high reactivity with OH, and high yields for COOs.

altmetric score

  • 0.5

author list (cited authors)

  • Li, Y., Zhao, J., Gomez-Hernandez, M., & Zhang, R.

citation count

  • 0

complete list of authors

  • Li, Yixin||Zhao, Jiayun||Gomez-Hernandez, Mario||Zhang, Renyi

Book Title

  • EGUsphere

publication date

  • December 2021