An investigation of matched index of refraction technique and its application in optical measurements of fluid flow
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Optical distortions caused by non-uniformities of the refractive index within the measurement volume is a major impediment for all laser diagnostic imaging techniques applied in experimental fluid dynamic studies. Matching the refractive indices of the working fluid and the test section walls and interfaces provides an effective solution to this problem. The experimental set-ups designed to be used along with laser imaging techniques are typically constructed of transparent solid materials. In this investigation, different types of aqueous salt solutions and various organic fluids are studied for refractive index matching with acrylic and fused quartz, which are commonly used in construction of the test sections. One aqueous CaCl2 2H2O solution (63 % by weight) and two organic fluids, Dibutyl Phthalate and P-Cymene, are suggested for refractive index matching with fused quartz and acrylic, respectively. Moreover, the temperature dependence of the refractive indices of these fluids is investigated, and the Thermooptic Constant is calculated for each fluid. Finally, the fluid viscosity for different shear rates is measured as a function of temperature and is applied to characterize the physical behavior of the proposed fluids. 2012 Springer-Verlag Berlin Heidelberg.