The implementation of spherical acoustic holography
Conference Paper
Overview
Additional Document Info
Other
View All
Overview
abstract
In this article, spatial filtering procedures with application to spherical acoustical holography are discussed. Planar and cylindrical holography are the most widely used amongst the various nearfield acoustical holography techniques. However, when the geometry of a source is similar to a sphere, spherical holography may yield better results than other types of holography since there are no errors due to truncation of the sound field in the spherical case. Spatial filtering affects the accuracy of spherical acoustical holography critically, especially in the case of backward projection. Thus spatial filtering is essential for successful application of spherical holography. In the present work, various filtering methods were evaluated in simulations made using sound pressure fields of various types and with different levels of random spatial noise. It was found that a procedure based on eliminating spherical harmonic coefficients that contribute insignificantly to the total sound power of the source gave the best results on average of the different procedures considered here. Spherical holography procedures were also verified experimentally. Reliable results were obtained using the power filtering algorithm. Thus it was concluded that spherical holography combined with power filtering may prove to be a useful tool for noise source identification.