Picomole-Scale Transition Metal Electrocatalysis Screening Platform for Discovery of Mild C-C Coupling and C-H Arylation through in Situ Anodically Generated Cationic Pd. Academic Article uri icon


  • Development of new transition-metal-catalyzed electrochemistry promises to improve overall synthetic efficiency. Here, we describe the first integrated platform for online screening of electrochemical transition-metal catalysis. It utilizes the intrinsic electrochemical capabilities of nanoelectrospray ionization mass spectrometry (nano-ESI-MS) and picomole-scale anodic corrosion of a Pd electrode to generate and evaluate highly efficient cationic catalysts for mild electrocatalysis. We demonstrate the power of the novel electrocatalysis platform by (1) identifying electrolytic Pd-catalyzed Suzuki coupling at room temperature, (2) discovering Pd-catalyzed electrochemical C-H arylation in the absence of external oxidant or additive, (3) developing electrolyzed Suzuki coupling/C-H arylation cascades, and (4) achieving late-stage functionalization of two drug molecules by the newly developed mild electrocatalytic C-H arylation. More importantly, the scale-up reactions confirm that new electrochemical pathways discovered by nano-ESI can be implemented under the conventional electrolytic reaction conditions. This approach enables in situ mechanistic studies by capturing various intermediates including transient transition metal species by MS, and thus uncovering the critical role of anodically generated cationic Pd catalyst in promoting otherwise sluggish transmetalation in C-H arylation. The anodically generated cationic Pd with superior catalytic efficiency and novel online electrochemical screening platform hold great potential for discovering mild transition-metal-catalyzed reactions.

published proceedings

  • J Am Chem Soc

author list (cited authors)

  • Cheng, H., Yang, T., Edwards, M., Tang, S., Xu, S., & Yan, X.

complete list of authors

  • Cheng, Heyong||Yang, Tingyuan||Edwards, Madison||Tang, Shuli||Xu, Shiqing||Yan, Xin

publication date

  • January 1, 2022 11:11 AM