A Low-Cost Experimental Testbed for Energy-Saving HVAC Control Based on Human Behavior Monitoring Academic Article uri icon


  • Heating, ventilation, and cooling (HVAC) is the largest source of residential energy consumption. Occupancy sensors' data can be used for HVAC control since they indicate the number of people in the building. HVAC/sensor interactions show the essential features of a typical cyber-physical system (CPS). However, there are communication protocol incompatibility issues in the CPS interface between the sensors and the building HVAC server. Through either wired or wireless communication links, the server always needs to understand the communication schedule to receive occupant values from sensors. This paper proposes two hardware-based emulators to investigate the use of wired/wireless communication interfaces for occupancy sensor-based building CPS control. The interaction scheme between sensors and HVAC server will be discussed. The authors have built two hardware/software emulation platforms to investigate the sensor/HVAC integration strategies. The first emulator demonstrates the residential building's energy control by using sensors and Raspberry pi boards to emulate the functions/responses of a static thermostat. In this case, room HVAC temperature settings could be changed in real-time with a high resolution based on the collected sensor data. The second emulator is built to show the energy control in commercial building by transmitting the sensor data and control signals via BACnet in HVAC system. Both emulators discussed above are portable (i.e., all hardware units can be easily taken to a new place) and have extremely low cost. This research tests the whole system with YABE (Yet Another BACnet Explorer) and WebCTRL.

published proceedings

  • International Journal of Cyber-Physical Systems

author list (cited authors)

  • Ye, Z., Hu, F., Zhang, L., Chu, Z., & O'Neill, Z.

citation count

  • 0

complete list of authors

  • Ye, Zhijing||Hu, Fei||Zhang, Lin||Chu, Zhe||O'Neill, Zheng

publication date

  • January 2020