Systems and Methods for the Spectral Calibration of Swept Source Optical Coherence Tomography Systems Institutional Repository Document uri icon

abstract

  • This dissertation relates to the transition of the state of the art of swept source optical coherence tomography (SS-OCT) systems to a new realm in which the image acquisition speed is improved by an order of magnitude. With the aid of a better quality imaging technology, the speed-up factor will considerably shorten the eye-exam clinical visits which in turn improves the patient and doctor interaction experience. These improvements will directly lower associated medical costs for eye-clinics and patients worldwide. There are several other embodiments closely related to Optical Coherence Tomography (OCT) that could benefit from the ideas presented in this dissertation including: optical coherence microscopy (OCM), full-field OCT (FF-OCT), optical coherence elastography (OCE), optical coherence tomography angiography (OCT-A), anatomical OCT (aOCT), optical coherence photoacoustic microscopy (OC-PAM), micro optical coherence tomography ($mu$ OCT), among others. Every new iteration of OCT technology has always come about with advanced signal processing and data acquisition algorithms using mixed-signal architectures, calibration and signal processing techniques. The existing industrial practices towards data acquisition, processing, and image creation relies on conventional signal processing design flows, which extensively employ continuous/discrete techniques that are both time-consuming and costly. The ideas presented in this dissertation can take the technology to a new dimension of quality of service.

author list (cited authors)

  • Zavareh, A. T.

citation count

  • 0

complete list of authors

  • Zavareh, Amir Tofighi

publication date

  • January 2019