Gaussian Quadrature GQ Used to Accurately Approximate the Relative Weights of Reserves, Contingent Resources, and Prospective Resources Through A Cumulative Distribution Function Conference Paper uri icon

abstract

  • Abstract The objective of this work is to numerically estimate the fraction of Reserves assigned to each Reserves category of the PRMS matrix through a cumulative distribution function. We selected 38 wells from a Permian Basin dataset available to Texas A&M University. Previous work has shown that Swanson's Mean, which relates the Reserves categories through a cdf of a normal distribution, is an inaccurate method to determine the relationship of the Reserves categories with asymmetric distributions. Production data are lognormally distributed, regardless of basin type, thus cannot follow the SM concept. The Gaussian Quadrature (GQ) provides a methodology to accurately estimate the fraction of Reserves that lie in 1P, 2P, and 3P categories – known as the weights. Gaussian Quadrature is a numerical integration method that uses discrete random variables and a distribution that matches the original data. For this work, we associate the lognormal cumulative distribution function (CDF) with a set of discrete random variables that replace the production data, and determine the associated probabilities. The production data for both conventional and unconventional fields are lognormally distributed, thus we expect that this methodology can be implemented in any field. To do this, we performed probabilistic decline curve analysis (DCA) using Arps’ Hyperbolic model and Monte Carlo simulation to obtain the 1P, 2P, and 3P volumes, and calculated the relative weights of each Reserves category. We performed probabilistic rate transient analysis (RTA) using a commercial software to obtain the 1P, 2P, and 3P volumes, and calculated the relative weights of each Reserves category. We implemented the 3-, 5-, and 10-point GQ to obtain the weight and percentiles for each well. Once this was completed, we validated the GQ results by calculating the percent-difference between the probabilistic DCA, RTA, and GQ results. We increase the standard deviation to account for the uncertainty of Contingent and Prospective resources and implemented 3-, 5-, and 10-point GQ to obtain the weight and percentiles for each well. This allows us to also approximate the weights of these volumes to track them through the life of a given project. The probabilistic DCA, RTA and Reserves results indicate that the SM is an inaccurate method for estimating the relative weights of each Reserves category. The 1C, 2C, 3C, and 1U, 2U, and 3U Contingent and Prospective Resources, respectively, are distributed in a similar way but with greater variance, incorporated in the standard deviation. The results show that the GQ is able to capture an accurate representation of the Reserves weights through a lognormal CDF. Based on the proposed results, we believe that the GQ is accurate and can be used to approximate the relationship between the PRMS categories. This relationship will aid in booking Reserves to the SEC because it can be recreated for any field. These distributions of Reserves and resources other than Reserves (ROTR) are important for planning and for resource inventorying. The GQ provides a measure of confidence on the prediction of the Reserves weights because of the low percent difference between the probabilistic DCA, RTA, and GQ weights. This methodology can be implemented in both conventional and unconventional fields.

name of conference

  • SPE Annual Technical Conference and Exhibition

published proceedings

  • Day 2 Wed, September 22, 2021

author list (cited authors)

  • Moridis, N., Lee, W. J., Sim, W., & Blasingame, T.

complete list of authors

  • Moridis, Nefeli||Lee, W John||Sim, Wayne||Blasingame, Thomas

publication date

  • January 1, 2021 11:11 AM

publisher

  • SPE  Publisher