Variability of ecosystem carbon source from microbial respiration is controlled by rainfall dynamics.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Soil heterotrophic respiration (Rh) represents an important component of the terrestrial carbon cycle that affects whether ecosystems function as carbon sources or sinks. Due to the complex interactions between biological and physical factors controlling microbial growth, Rh is uncertain and difficult to predict, limiting our ability to anticipate future climate trajectories. Here we analyze the global FLUXNET 2015 database aided by a probabilistic model of microbial growth to examine the ecosystem-scale dynamics of Rh and identify primary predictors of its variability. We find that the temporal variability in Rh is consistently distributed according to a Gamma distribution, with shape and scale parameters controlled only by rainfall characteristics and vegetation productivity. This distribution originates from the propagation of fast hydrologic fluctuations on the slower biological dynamics of microbial growth and is independent of biome, soil type, and microbial physiology. This finding allows us to readily provide accurate estimates of the mean Rh and its variance, as confirmed by a comparison with an independent global dataset. Our results suggest that future changes in rainfall regime and net primary productivity will significantly alter the dynamics of Rh and the global carbon budget. In regions that are becoming wetter, Rh may increase faster than net primary productivity, thereby reducing the carbon storage capacity of terrestrial ecosystems.