Fluid Shear Stress Effects on Endothelial Cell Cytosolic pH.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Fluid flow can modulate endothelial cell intracellular pH (pH(i)). Venous and arterial shear stresses of 1.4 and 14 dyn/cm2, respectively, induced intracellular acidification. The kinetics of the process and magnitude of acidification were dependent on the level of shear stress. Endothelial cells exposed to a venous shear stress were able to recover from the acidification, whereas cells exposed to an arterial shear stress remained acidic. Addition of SITS (1 mM), a HCO(3) (-)/CI(-) exchange inhibitor, greatly reduced the shear stress induced acidification, suggesting that the HCO(3) (-)/C1(-) exchanger is activated by shear stress. Shear stress may activate the exchanger by lowering the [HCO(3) (-)] at the cell surface via convective mass transfer. Altering the HCO(3) (-) gradient across the cell membrane activates the exchanger and, as a consequence, results in intracellular acidification. Perfusion with media containing ATP (10 microM) altered the kinetics of flow-induced acidification observed at both shear stress levels. ATP modulation of pH(i) may be coupled to the rise in [Ca(2+)](j) known to occur with ATP stimulation. To summarize, media perfusion induces intracellular acidification in endothelial cells, and there is evidence to suggest that pH(i) may serve as a second messenger to modulate flow associated changes in endothelial cell metabolism.