Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The feasibility of developing biodegradable polymer scaffolds to engineer tissues was investigated by studying the effects of pore size on the dynamics of fibrovascular tissue ingrowth. Tissue advanced into amorphous poly(L-lactic acid) porous substrates faster as the pore diameter increased. Porous cylindrical devices of 13.5 mm diameter, 5 mm thickness, and approximately 500 microns pore size were filled completely by tissue 5 days postimplantation. Although prevascularized devices possessed minimal void volume for cell seeding to regenerate metabolic organs, they hold promise in the regeneration of tubular tissues by relying on the epithelization of prevascularized grafts.