Phenotypic Diversity and Association Mapping of Ascorbic Acid Content in Spinach.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Ascorbic acid (AsA), or vitamin C, is an essential nutrient for humans. In plants, AsA functions as an antioxidant during normal metabolism or in response to stress. Spinach is a highly nutritious green leafy vegetable that is consumed fresh, cooked or as a part of other dishes. One current goal in spinach breeding programs is to enhance quality and nutritional content. However, little is known about the diversity of nutritional content present in spinach germplasm, especially for AsA content. In this study, a worldwide panel of 352 accessions was screened for AsA content showing that variability in spinach germplasm is high and could be utilized for cultivar improvement. In addition, a genome-wide association study for marker-trait association was performed using three models, and associated markers were searched in the genome for functional annotation analysis. The generalized linear model (GLM), the compressed mixed linear model (CMLM) based on population parameters previously determined (P3D) and the perMarker model together identified a total of 490 significant markers distributed across all six spinach chromosomes indicating the complex inheritance of the trait. The different association models identified unique and overlapping marker sets, where 27 markers were identified by all three models. Identified high AsA content accessions can be used as parental lines for trait introgression and to create segregating populations for further genetic analysis. Bioinformatic analysis indicated that identified markers can differentiate between high and low AsA content accessions and that, upon validation, these markers should be useful for breeding programs.