Huerta, Margarita (2013-05). The Impact of Science Notebook Writing on ELL and Low-SES Students' Science Language Development and Conceptual Understanding. Doctoral Dissertation. Thesis uri icon

abstract

  • This quantitative study explored the impact of literacy integration in a science inquiry classroom involving the use of science notebooks on the academic language development and conceptual understanding of students from diverse (i.e., English Language Learners, or ELLs) and low socio-economic status (low-SES) backgrounds. The study derived from a randomized, longitudinal, field-based NSF funded research project (NSF Award No. DRL - 0822343) targeting ELL and non-ELL students from low-SES backgrounds in a large urban school district in Southeast Texas. The study used a scoring rubric (modified and tested for validity and reliability) to analyze fifth-grade school students' science notebook entries. Scores for academic language quality (or, for brevity, language) were used to compare language growth over time across three time points (i.e., beginning, middle, and end of the school year) and to compare students across categories (ELL, former ELL, non-ELL, and gender) using descriptive statistics and mixed between-within subjects analysis of variance (ANOVA). Scores for conceptual understanding (or, for brevity, concept) were used to compare students across categories (ELL, former ELL, non-ELL, and gender) in three domains using descriptive statistics and ANOVA. A correlational analysis was conducted to explore the relationship, if any, between language scores and concept scores for each group. Students demonstrated statistically significant growth over time in their academic language as reflected by science notebook scores. While ELL students scored lower than former ELL and non-ELL students at the first two time points, they caught up to their peers by the third time point. Similarly, females outperformed males in language scores in the first two time points, but males caught up to females in the third time point. In analyzing conceptual scores, ELLs had statistically significant lower scores than former-ELL and non-ELL students, and females outperformed males in the first two domains. These differences, however, were not statistically significant in the last domain. Last, correlations between language and concept scores were overall, positive, large, and significant across domains and groups. The study presents a rubric useful for quantifying diverse students' science notebook entries, and findings add to the sparse research on the impact of writing in diverse students' language development and conceptual understanding in science.
  • This quantitative study explored the impact of literacy integration in a science inquiry classroom involving the use of science notebooks on the academic language development and conceptual understanding of students from diverse (i.e., English Language Learners, or ELLs) and low socio-economic status (low-SES) backgrounds. The study derived from a randomized, longitudinal, field-based NSF funded research project (NSF Award No. DRL - 0822343) targeting ELL and non-ELL students from low-SES backgrounds in a large urban school district in Southeast Texas. The study used a scoring rubric (modified and tested for validity and reliability) to analyze fifth-grade school students' science notebook entries.

    Scores for academic language quality (or, for brevity, language) were used to compare language growth over time across three time points (i.e., beginning, middle, and end of the school year) and to compare students across categories (ELL, former ELL, non-ELL, and gender) using descriptive statistics and mixed between-within subjects analysis of variance (ANOVA). Scores for conceptual understanding (or, for brevity, concept) were used to compare students across categories (ELL, former ELL, non-ELL, and gender) in three domains using descriptive statistics and ANOVA. A correlational analysis was conducted to explore the relationship, if any, between language scores and concept scores for each group.

    Students demonstrated statistically significant growth over time in their academic language as reflected by science notebook scores. While ELL students scored lower than former ELL and non-ELL students at the first two time points, they caught up to their peers by the third time point. Similarly, females outperformed males in language scores in the first two time points, but males caught up to females in the third time point. In analyzing conceptual scores, ELLs had statistically significant lower scores than former-ELL and non-ELL students, and females outperformed males in the first two domains. These differences, however, were not statistically significant in the last domain. Last, correlations between language and concept scores were overall, positive, large, and significant across domains and groups. The study presents a rubric useful for quantifying diverse students' science notebook entries, and findings add to the sparse research on the impact of writing in diverse students' language development and conceptual understanding in science.

publication date

  • May 2013