FINITELY GENERATED SUBGROUPS OF FREE GROUPS AS FORMAL LANGUAGES AND THEIR COGROWTH Academic Article uri icon

abstract

  • For finitely generated subgroups $H$ of a free group $F_m$ of finite rank $m$, we study the language $L_H$ of reduced words that represent $H$ which is a regular language. Using the (extended) core of Schreier graph of $H$, we construct the minimal deterministic finite automaton that recognizes $L_H$. Then we characterize the f.g. subgroups $H$ for which $L_H$ is irreducible and for such groups explicitly construct ergodic automaton that recognizes $L_H$. This construction gives us an efficient way to compute the cogrowth series $L_H(z)$ of $H$ and entropy of $L_H$. Several examples illustrate the method and a comparison is made with the method of calculation of $L_H(z)$ based on the use of Nielsen system of generators of $H$.

published proceedings

  • GROUPS COMPLEXITY CRYPTOLOGY

author list (cited authors)

  • Darbinyan, A., Grigorchuk, R., & Shaikh, A.

citation count

  • 0

publication date

  • November 2021