External Corrosion Behavior of Steel/GFRP Composite Pipes in Harsh Conditions. Academic Article uri icon

abstract

  • In this study, we report on the corrosion behavior of hybrid steel/glass fiber-reinforced polymer (GFRP) composite pipes under harsh corrosive conditions for prolonged durations. Specimens were immersed in highly concentrated solutions of hydrochloric acid, sodium chloride, and sulfuric acid for durations up to one year. Detailed qualitative analysis using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and energy-dispersive X-ray spectroscopy (EDX) is presented. It is shown that the hybrid pipes have excellent corrosion resistance with a corrosion rate of less than 1% of the corrosion rate for conventional steel pipes. That low corrosion rate can be attributed to the formation of pores in the GFRP layer due to increased absorption and saturation moisture in the material with increased soaking time. This can be reduced or even prevented through a more controlled process for fabricating the protective layers. These promising results call for more utilization of GFRP protective layers in novel design concepts to control corrosion.

published proceedings

  • Materials (Basel)

altmetric score

  • 1

author list (cited authors)

  • Alabtah, F. G., Mahdi, E., & Khraisheh, M.

citation count

  • 2

complete list of authors

  • Alabtah, Fatima Ghassan||Mahdi, Elsadig||Khraisheh, Marwan

publication date

  • October 2021

publisher