The Interaction between the Nocturnal Amazonian Low-Level Jet and Convection in CESM Academic Article uri icon


  • AbstractA nocturnal Amazonian low-level jet (ALLJ) was recently diagnosed using reanalysis data. This work assesses the ability of CESM1.2.2 to reproduce the jet and explores the mechanisms by which the ALLJ influences convection in the Amazon. The coupled CESM simulates the nocturnal ALLJ realistically, while CAM5 does not. A low-level cold air temperature bias in the eastern Amazon exists in CAM5, and thus the ALLJ is weaker than observed. However, a cold SST bias over the equatorial North Atlantic in the coupled model offsets the cold air temperature bias, producing a realistic ALLJ. Climate models significantly underestimate MarchMay (MAM) precipitation over the eastern Amazon. We ran two sensitivity experiments using the coupled CESM by adding bottom-heavy diabatic heating at noon and midnight for 2.5 h along the coastal Amazon during MAM to mimic the occurrence of shallow precipitating convection. When heating is added during the early afternoon, coastal convection deepens and the ALLJ transports moisture inland from the ocean, preconditioning the environment for deep convective development during the ensuing hours. The increased convection over the eastern Amazon also moderately alleviates the equatorial Atlantic westerly wind bias, leading to deepening of the east Atlantic thermocline in the following months and partially improving the simulated JuneAugust (JJA) Atlantic cold tongue in the coupled model. When heating is added at night, coastal convection does not strengthen as much and the ALLJ transports less moisture. Improvements in the simulated Atlantic winds and SST are negligible. Therefore, diurnal circulations matter to the organization of convection and rain across the Amazon, with impacts over the equatorial Atlantic.

published proceedings


altmetric score

  • 12.25

author list (cited authors)

  • Bai, H., & Schumacher, C.

citation count

  • 1

complete list of authors

  • Bai, Hedanqiu||Schumacher, Courtney

publication date

  • November 2021