Desulfonation and defluorination of 6:2 fluorotelomer sulfonic acid (6:2 FTSA) by Rhodococcus jostii RHA1: Carbon and sulfur sources, enzymes, and pathways. Academic Article uri icon


  • 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is one per- and poly-fluoroalkyl substances commonly detected in the environment. While biotransformation of 6:2 FTSA has been reported, factors affecting desulfonation and defluorination of 6:2 FTSA remain poorly understood. This study elucidated the effects of carbon and sulfur sources on the gene expression of Rhodococcus jostii RHA1 which is responsible for the 6:2 FTSA biotransformation. While alkane monooxygenase and cytochrome P450 were highly expressed in ethanol-, 1-butanol-, and n-octane-grown RHA1 in sulfur-rich medium, these cultures only defluorinated 6:2 fluorotelomer alcohol but not 6:2 FTSA, suggesting that the sulfonate group in 6:2 FTSA hinders enzymatic defluorination. In sulfur-free growth media, alkanesulfonate monooxygenase was linked to desulfonation of 6:2 FTSA; while alkane monooxygenase, haloacid dehalogenase, and cytochrome P450 were linked to defluorination of 6:2 FTSA. The desulfonation and defluorination ability of these enzymes toward 6:2 FTSA were validated through heterologous gene expression and in vitro assays. Four degradation metabolites were confirmed and one was identified as a tentative metabolite. The results provide a new understanding of 6:2 FTSA biotransformation by RHA1. The genes encoding these desulfonating- and defluorinating-enzymes are potential markers to be used to assess 6:2 FTSA biotransformation in the environment.

published proceedings

  • J Hazard Mater

author list (cited authors)

  • Yang, S., Shi, Y., Strynar, M., & Chu, K.

citation count

  • 19

complete list of authors

  • Yang, Shih-Hung||Shi, Ying||Strynar, Mark||Chu, Kung-Hui

publication date

  • February 2022