Identification of Force Coefficients in a Squeeze Film Damper With a Mechanical End Seal: Centered Circular Orbit Tests Conference Paper uri icon

abstract

  • The damping capability of squeeze film dampers (SFDs) relies on adequate end sealing to prevent air ingestion and entrapment. The paper presents the parameter identification, procedure and damping coefficients, of a test SFD featuring a mechanical seal that effectively eliminates lubricant side leakage. The test damper reproduces an aircraft application intended to contain the lubricant in the film lands for extended periods of time. The test damper journal is 2.54 cm in length and 12.7 cm in diameter, with a nominal clearance of 0.127 mm. The SFD feed end is flooded with oil, while the discharge end contains a recirculation groove and four orifice ports. In a companion paper (ASME GT2006-90782), single frequency - unidirectional load excitation tests were conducted, without and with lubricant in the squeeze film lands, to determine the seal dry-friction force and viscous damping force coefficients. Presently, tests with single frequency excitation loads rendering circular centered orbits excitations are conducted to identify the SFD force coefficients. The identified parameters include the overall system damping and the individual contributions from the squeeze film, dry friction and structural damping. The identified system damping coefficients are frequency and motion amplitude dependent due to the dry friction interaction at the mechanical seal interface. Identified squeeze film force coefficients, damping and added mass, are in good agreement with predictions based on the full film, short length damper model.

name of conference

  • Part A: Tribomaterials; Lubricants and Additives; Elastohydrodynamic Lubrication; Hydrodynamic Lubrication and Fluid Film Bearings; Rolling Element Bearings; Engine Tribology; Machine Components Tribology; Contact Mechanics

published proceedings

  • Part A: Tribomaterials; Lubricants and Additives; Elastohydrodynamic Lubrication; Hydrodynamic Lubrication and Fluid Film Bearings; Rolling Element Bearings; Engine Tribology; Machine Components Tribology; Contact Mechanics

author list (cited authors)

  • San Andres, L., & Delgado, A.

citation count

  • 0

complete list of authors

  • San AndreĢs, Luis||Delgado, Adolfo

publication date

  • January 2006