Pump Grooved Seals: a CFD Approach to Improve Bulk-Flow Model Predictions Conference Paper uri icon

abstract

  • Abstract In multiple stage centrifugal pumps, balance pistons, often comprising a grooved annular seal, equilibrate the full pressure rise across the pump. Grooves in the stator break the evolution of fluid swirl and increase mechanical energy dissipation; hence, a grooved seal offers a lesser leakage and lower cross-coupled stiffness than a similar size uniform clearance seal. To date bulk-flow models (BFMs) expediently predict leakage and rotor dynamic force coefficients of grooved seals; however, they lack accuracy for any other geometry besides rectangular. Note scalloped and triangular (serrated) groove seals are not uncommon. In these cases, computational fluid dynamics (CFD) models seals of complex shape to produce leakage and force coefficients. Alas CFD is not yet ready for routine engineer practice. Hence, an intermediate procedure presently takes an accurate two-dimensional (2D) CFD model of a smaller flow region, namely a single groove and adjacent land, to produce stator and rotor surface wall friction factors, expressed as functions of the Reynolds numbers, for integration into an existing BFM and ready prediction of seal leakage and force coefficients. The selected groove-land section is well within the seal length and far away from the effects of the inlet condition. The analysis takes three water lubricated seals with distinct groove shapes: rectangular, scalloped and triangular. Each seal, with length/diameter L/D = 0.4, has 44 grooves of shallow depth dg clearance Cr, and operates at a rotor speed equal to 5,588 rpm (78 m/s surface speed) and with a pressure drop of 14.9 MPa. The method validity is asserted when 2D (single groove-land) and 3D (whole seal) predictions for pressure and velocity fields are compared against each other. The CFD predictions, 2D and 3D, show the triangular groove seal has the largest leakage, 41% greater than the rectangular groove seal does, albeit producing the smallest cross-coupled stiffnesses and whirl frequency ratio. On the other hand, the triangular groove seal has the largest direct stiffness and damping coefficients. The scalloped groove seal shows similar rotordynamic force coefficients as the rectangular groove seal but leaks 13% more. For the three seal groove types, the modified BFM predicts leakage that is less than 6% away from that delivered by CFD, whereas the seal stiffnesses (both direct and cross-coupled) differ by 13%, the direct damping coefficients by 18%, and the added mass coefficients are within 30%. The procedure introduced extends the applicability of a BFM to predict the dynamic performance of grooved seals with distinctive shapes.

name of conference

  • Volume 7B: Structures and Dynamics

published proceedings

  • PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 7B

author list (cited authors)

  • Wu, T., & San Andres, L.

citation count

  • 0

complete list of authors

  • Wu, Tingcheng||San Andres, Luis

publication date

  • June 2019