High-throughput near-field optical nanoprocessing of solution-deposited nanoparticles. Academic Article uri icon

abstract

  • The application of nanoscale electrical and biological devices will benefit from the development of nanomanufacturing technologies that are high-throughput, low-cost, and flexible. Utilizing nanomaterials as building blocks and organizing them in a rational way constitutes an attractive approach towards this goal and has been pursued for the past few years. The optical near-field nanoprocessing of nanoparticles for high-throughput nanomanufacturing is reported. The method utilizes fluidically assembled microspheres as a near-field optical confinement structure array for laser-assisted nanosintering and nanoablation of nanoparticles. By taking advantage of the low processing temperature and reduced thermal diffusion in the nanoparticle film, a minimum feature size down to approximately 100 nm is realized. In addition, smaller features (50 nm) are obtained by furnace annealing of laser-sintered nanodots at 400 degrees C. The electrical conductivity of sintered nanolines is also studied. Using nanoline electrodes separated by a submicrometer gap, organic field-effect transistors are subsequently fabricated with oxygen-stable semiconducting polymer.

published proceedings

  • Small

altmetric score

  • 0.5

author list (cited authors)

  • Pan, H., Hwang, D. J., Ko, S. H., Clem, T. A., Frchet, J., Buerle, D., & Grigoropoulos, C. P.

citation count

  • 55

complete list of authors

  • Pan, Heng||Hwang, David J||Ko, Seung H||Clem, Tabitha A||Fréchet, Jean MJ||Bäuerle, Dieter||Grigoropoulos, Costas P

publication date

  • August 2010

publisher

published in