Feasibility Study of Single-Crystal Si Island Manufacturing by Microscale Printing of Nanoparticles and Laser Crystallization Academic Article uri icon


  • Nonvacuum printing of single crystals would be ideal for high-performance functional device (such as electronics) fabrication yet challenging for most materials, especially for inorganic semiconductors. Currently, the printed films are dominant in amorphous, polycrystalline, or nanoparticle films. In this article, manufacturing of single-crystal silicon micro/nano-islands is attempted. Different from traditional vapor deposition for silicon thin-film preparation, silicon nanoparticle ink was aerosol-printed followed by confined laser melting and crystallization, allowing potential fabrication of single-crystal silicon micro/nano-islands. It is also shown that as-fabricated Si islands can be transfer-printed onto polymer substrates for potential application of flexible electronics. The additive nature of this technique suggests a scalable and economical approach for high-crystallinity semiconductor printing.

published proceedings

  • ACS Applied Materials & Interfaces

altmetric score

  • 1.5

author list (cited authors)

  • Shou, W., Ludwig, B., Wang, L., Gong, X., Yu, X., Grigoropoulos, C. P., & Pan, H.

citation count

  • 1

complete list of authors

  • Shou, Wan||Ludwig, Brandon||Wang, Letian||Gong, Xiangtao||Yu, Xiaowei||Grigoropoulos, Costas P||Pan, Heng

publication date

  • September 2019