Ultrafast, Non‐Equilibrium and Transient Heating and Sintering of Nanocrystals for Nanoscale Metal Printing Academic Article uri icon

abstract

  • The carrier excitation, relaxation, energy transport, and conversion processes during light-nanocrystal (NC) interactions have been intensively investigated for applications in optoelectronics, photocatalysis, and photovoltaics. However, there are limited studies on the non-equilibrium heating under relatively high laser excitation that leads to NCs sintering. Here, the authors use femtosecond laser two-pulse correlation and in-situ optical transmission probing to investigate the non-equilibrium heating of NCs and transient sintering dynamics. First, a two-pulse correlation study reveals that the sintering rate strongly increases when the two heating laser pulses are temporally separated by <10 ps. Second, the sintering rate is found to increase nonlinearly with laser fluence when heating with ≈700 fs laser pulses. By three-temperature modeling, the NC sintering mechanism mediated by electron induced ligand transformation is suggested. The ultrafast and non-equilibrium process facilitates sintering in dry (spin-coated) and wet (solvent suspended) environments. The nonlinear dependence of sintering rate on laser fluence is exploited to print sub-diffraction-limited features in NC suspension. The smallest feature printed is ≈200 nm, which is ≈¼ of the laser wavelength. These findings provide a new perspective toward nanomanufacturing development based on probing and engineering ultrafast transport phenomena in functional NCs.

published proceedings

  • Small

author list (cited authors)

  • Podder, C., Gong, X., & Pan, H.

citation count

  • 1

complete list of authors

  • Podder, Chinmoy||Gong, Xiangtao||Pan, Heng

publication date

  • December 2021

publisher

published in