Role of Polysulfide Anions in Solid-Electrolyte Interphase Formation at the Lithium Metal Surface in Li-S Batteries.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Delineating intricate interactions between highly reactive Li-metal electrodes and the diverse constituents of battery electrolytes has been a long-standing scientific challenge in materials design for advanced energy storage devices. Here, we isolated lithium polysulfide anions (LiS4-) from an electrolyte solution based on their mass-to-charge ratio and deposited them on Li-metal electrodes under clean vacuum conditions using ion soft landing (ISL), a highly controlled interface preparation technique. The molecular level precision in the construction of these model interfaces with ISL, coupled with in situ X-ray photoelectron spectroscopy and ab initio theoretical calculations, allowed us to obtain unprecedented insight into the parasitic reactions of well-defined polysulfides on Li-metal electrodes. Our study revealed that the oxide-rich surface layer, which is amenable to direct electron exchange, drives multielectron sulfur oxidation (S0 S6+) processes. Our results have substantial implications for the rational design of future Li-S batteries with improved efficiency and durability.